首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
大气科学   1篇
地球物理   10篇
地质学   21篇
海洋学   8篇
天文学   49篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   5篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有89条查询结果,搜索用时 46 毫秒
21.
Flowing sediments such as debris and liquefied soils could exert a tremendous amount of force as they impact objects along their paths. The total impact force generally varies with slope angle, velocity at impact, and thickness of the flowing sediment. Estimation of the impact force of flowing sediments against protective measures such as earth retaining structures is an important factor for risk assessment. In this paper, we conduct small-scale laboratory physical modeling of sand flow at different slopes and measure the impact force exerted by this material on a fixed rigid wall. We also conduct numerical simulations in the Eulerian framework using computational fluid dynamics algorithms to analyze and reproduce the laboratory test results. The numerical simulations take into consideration the overtopping of the wall with sand, which influenced the measured impact force–time history responses. In addition, the numerical simulations are shown to capture accurately the change of the impact force with slope angle. Finally, the modeling approach conducted in this study is used to estimate the quasi-static force generated by the sediment as it comes to rest on the wall following impact.  相似文献   
22.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   
23.
Ablation characteristics of five glaciers in Patagonia and New Zealand were compared. Investigated glaciers were Tyndall and Moreno in southern Patagonia, Soler and San Rafael in northern Patagonia, and Franz Josef in New Zealand. Micro-meteorological observations were carried out at the glaciers and the heat balance components were estimated. At Franz Josef and Soler glaciers, the sensible heat flux is the largest and the latent heat flux is the second, and they are larger than the net radiation. At San Rafael Glacier, the net radiation is the largest and the latent heat flux is the smallest component, which is similar to Moreno and Tyndall glaciers. Though the latent heat flux is the smallest component at San Rafael Glacier, it is more than twice as large as that at Tyndall Glacier and contributes substantially to ice melting. The ratios of heat balance components were very different among glaciers, but the total heat flux ranged from about 240 to 300 W m−2 showing little difference among glaciers.  相似文献   
24.
The relationship between the magmatism of the Cretaceous Ofuku pluton and mineralization in and around the Akiyoshi Plateau, Yamaguchi Prefecture, Japan was investigated using a combination of field observation, petrographic and geochemical analyses, K–Ar geochronology, and fluid inclusion data. The Ofuku pluton has a surface area of 1.5 × 1.0 km, and was intruded into the Paleozoic accretionary complexes of the Akiyoshi Limestone, Ota Group and Tsunemori Formation in the western part of the Akiyoshi Plateau. The pluton belongs to the ilmenite‐series and is zoned, consisting mainly of early tonalite and granodiorite that share a gradational contact, and later granite and aplite that intruded the tonalite and granodiorite. Harker diagrams show that the Ofuku pluton has intermediate to silicic compositions ranging from 60.4 to 77.9 wt.% SiO2, but a compositional gap exists between 70.5 to 73.4 wt.% SiO2 (anhydrous basis). Modal and chemical variations indicate that the assumed parental magma is tonalitic. Quantitative models of fractional crystallization based on mass balance calculations and the Rayleigh fractionation model using major and trace element data for all crystalline phases indicate that magmatic fractionation was controlled mainly by crystal fractionation of plagioclase, hornblende, clinopyroxene and orthopyroxene at the early stage, and quartz, plagioclase, biotite, hornblende, apatite, ilmenite and zircon at the later stage. The residual melt extracted from the granodiorite mush was subsequently intruded into the northern and western parts of the Ofuku pluton as melt lens to form the granite and aplite. The age of the pluton was estimated at 99–97 Ma and 101–98 Ma based on K–Ar dating of hornblende and biotite, respectively. Both ages are consistent within analytical error, indicating that the Ofuku pluton and the associated Yamato mine belong to the Tungsten Province of the San‐yo Belt, which is genetically related to the ilmenite‐series granitoids of the Kanmon to Shunan stages. The aplite contains Cl‐rich apatite and REE‐rich monazite‐(Ce), allanite‐(Ce), xenotime and bastnäsite‐(Ce), indicating that the residual melt was rich in halogens and REEs. The tonalite–granodiorite of the Ofuku pluton contains many three‐phase fluid inclusions, along with daughter minerals such as NaCl and KCl, and vapor/liquid (V/L) volume ratios range from 0.2 to 0.9, suggesting that the fluid was boiling. In contrast, the granite and aplite contain low salinity two‐phase inclusions with low V/L ratios. The granodiorite occupies a large part of the pluton, and the inclusions with various V/L ratios with chloride daughter minerals suggest the boiling fluids might be related to the mineralization. This fluid could have carried base metals such as Cu and Zn, forming Cu ore deposits in and around the Ofuku pluton. The occurrence and composition of fluid inclusions in the igneous rocks from the Akiyoshi Plateau are directly linked to Cu mineralization in the area, demonstrating that fluid inclusions are useful indicators of mineralization.  相似文献   
25.
We report the mineralogy and texture of magnetite grains, a magnetite‐dolomite assemblage, and the adjacent mineral phases in five hydrated fine‐grained Antarctic micrometeorites (H‐FgMMs). Additionally, we measured the oxygen isotopic composition of magnetite grains and a magnetite‐dolomite assemblage in these samples. Our mineralogical study shows that the secondary phases identified in H‐FgMMs have similar textures and chemical compositions to those described previously in other primitive solar system materials, such as carbonaceous chondrites. However, the oxygen isotopic compositions of magnetite in H‐FgMMs span a range of ?17O values from +1.3‰ to +4.2‰, which is intermediate between magnetites measured in carbonaceous and ordinary chondrites (CCs and OCs). The δ18O values of magnetites in one H‐FgMM have a ~27‰ mass‐dependent spread in a single 100 × 200 μm particle, indicating that there was a localized control of the fluid composition, probably due to a low water‐to‐rock mass ratio. The ?17O values of magnetite indicate that H‐FgMMs sampled a different aqueous fluid than ordinary and carbonaceous chondrites, implying that the source of H‐FgMMs is probably distinct from the asteroidal source of CCs and OCs. Additionally, we analyzed the oxygen isotopic composition of a magnetite‐dolomite assemblage in one of the H‐FgMMs (sample 03‐36‐46) to investigate the temperature at which these minerals coprecipitated. We have used the oxygen isotope fractionation between the coexisting magnetite and dolomite to infer a precipitation temperature between 160 and 280 °C for this sample. This alteration temperature is ~100–200 °C warmer than that determined from a calcite‐magnetite assemblage from the CR2 chondrite Al Rais, but similar to the estimated temperature of aqueous alteration for unequilibrated OCs, CIs, and CMs. This suggests that the sample 03‐36‐46 could come from a parent body that was large enough to attain temperatures as high as the OCs, CIs, and CMs, which implies an asteroidal origin for this particular H‐FgMM.  相似文献   
26.
By means of nanoscale surface observation, we have proposed a new approach for investigating fine crystals of cosmic materials to reveal their origin and growth conditions. Several different morphologies of polyhedral fine olivines with faceted faces have been found in Allende carbonaceous chondrite (4.5 byr in geochronological age). In the present work, molecular level topography of the faceted matrix olivine by Atomic Force Microscopy (AFM) has successfully been performed. The matrix olivine found to have preserved growth step pattern on its surface even though quite long time has passed since they formed in the early Solar System. The surface pattern suggests that the faceted matrix olivine could have been condensed from the gas phase, and possibly that these olivine crystals had continued to grow under a rapid cooling condition (0.1-1 K s−1). The estimated cooling rate agrees well with predictions based on hypothetical rapid heating and cooling events such as shock wave heating.  相似文献   
27.
The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock 15N-enrichments (δ15N up to 1500‰) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk δ15N values ranging between 1000‰ and 1300‰. It is also characterized by the presence of numerous 15N hotspots (δ15N ranging from 1400‰ to 4000‰). No bulk (δD <-240‰) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were 15N-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing 15N over the whole fine-grained material and may have significantly modified its initial hydrogen isotopic composition. Based on a review of isotopic fractionation models, we conclude that the nitrogen isotopic fractionation process, its timing, and its location are still poorly constrained. The 15N-rich clasts may represent the surviving original carrier of the 15N anomaly in Isheyevo whole-rock.  相似文献   
28.
Two-dimensional 18O/16O isotopic analysis of the Vigarano matrix was conducted by secondary ion-imaging using a novel two-dimensional ion-imager. Quantitative oxygen-isotope images (isotopographs) of the Vigarano matrix show that 16O-rich micrograins are scattered within 16O-poor matrix. This heterogeneous O-isotopic distribution indicates that matrix is composed of different O-isotopic components that formed in different locations and/or at different times. However, the O-isotopic composition of groundmass in the matrix is the same as the bulk isotopic composition of the matrix within ±5 uncertainty. The spatial resolution and isotopic precision of our technique should allow submicron-size objects (>0.2 μm) with extreme O-isotopic anomalous characteristics (δ18OSMOW ∼250) to be detectable in isotopographs. Because the mean grain size of the matrix is ∼0.2 μm, the inability to detect such O-isotopic anomalous objects indicates that isotopically anomalous micrograins (e.g., presolar grains) are extremely rare in the Vigarano matrix and that most objects in the matrix were formed in the solar nebula or in the parent body.  相似文献   
29.
3-Hydroxy acids were detected in pure cultured microalgae: Chlorophyta—Chlamydomonas reinhardtii and Chlorella pyrenoidosa and Rhodophyta—Cyanidium caldarium (two strains), and cyanobacteria (Cyanophyta)—Anacystis nidulans, Phormidium foveolarum, Anabaena variabilis and Oscillatoria sp. Normal and branched (iso and anteiso) 3-hydroxy acids in the ranges of C8-C26 were found in all the samples studied at concentrations ranging from 0.036 to 2.3 and 0.000 to 0.12 mg g?1 of dry sample, respectively. The major constituents were generally even-carbon numbered normal acids with carbon chain lengths below C20. Microalgae and cyanobacteria may be the important sources of 3-hydroxy acids in natural environments.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号